Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Allyl-1-(3-cyanophenylmethylene)-2methyl-1*H*-benzoimidazol-3-ium bromide monohydrate

Xiong-Bin Xu, Rong Fu and Qiong Ye*

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: yeqiong@seu.edu.cn

Received 9 October 2007; accepted 21 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.111; data-to-parameter ratio = 20.0.

In the title compound, $C_{19}H_{18}N_3^+ \cdot Br^- \cdot H_2O$, the dihedral angle between the allyl group and the imidazole ring is 89.59 (14)°, while the dihedral angle between the cyanophenyl ring and the imidazole ring is 78.72 (7)°. O-H···Br hydrogen bonds form an infinite chain in the *c*-axis direction and C-H···Br and C-H···O interactions expand this chain into an infinite three-dimensional network.

Related literature

For related literature, see Aakeröy et al. (2005).

Experimental

Crystal data $C_{19}H_{18}N_3^+ \cdot Br^- \cdot H_2O$ $M_r = 386.29$

Monoclinic, $P2_1/c$ a = 13.4291 (18) Å b = 15.6490 (17) Å c = 9.0335 (14) Å $\beta = 104.048 (8)^{\circ}$ $V = 1841.6 (4) \text{ Å}^{3}$ Z = 4

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.840, T_{max} = 1.000$ (expected range = 0.702–0.836)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 218 parameters $wR(F^2) = 0.111$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$ 4366 reflections $\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $O1W-H1\cdots Br1$ 0.85 2.59 3.375 (2) 155 3.422 (3) $O1W - H2 \cdot \cdot \cdot Br1$ 2.78 0.85 134 3.939 (3) $C6-H6A\cdots Br1^{i}$ 0.93 3 21 137 C8-H8A···Br1ⁱⁱⁱ 0.96 2.94 3.767 (3) 145 C8-H8C···N3^{iv} 3.463 (4) 0.96 2.64 143 $C13-H13A\cdots O1W^{v}$ 0.93 2.50 3.359 (4) 154 3.843 (3) $C17 - H17A \cdots Br1^v$ 0.97 2.89 168 $C17 - H17B \cdots Br1^{iii}$ 0.97 2.91 3.862 (3) 167

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y, -z; (iv) x, y, z - 1; (v) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) x - 1, y, z - 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported by a Start-up Grant from SEU to YQ.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2074).

References

Aakeröy, C. B., Desper, J. & Urbina, J. F. (2005). Cryst. Growth Des. 5, 1283– 1293.

Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Mo $K\alpha$ radiation

 $0.22 \times 0.15 \times 0.08 \text{ mm}$

14149 measured reflections

4366 independent reflections

3365 reflections with $I > 2\sigma(I)$

 $\mu = 2.24 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.036$

supplementary materials

Acta Cryst. (2008). E64, o109 [doi:10.1107/S1600536807061867]

3-Allyl-1-(3-cyanophenylmethylene)-2-methyl-1H-benzoimidazol-3-ium bromide monohydrate

X.-B. Xu, R. Fu and Q. Ye

Comment

The title compound (Figure 1) was obtained by refluxing 3-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)benzonitrile and allyl bromide in THF. The X-ray diffraction experiment certified the successful synthesis of the title compound. The dihedral angle between the allyl groups and the imidazole ring is 89.59 (14)°, while the dihedral angle between the cyanobenzene ring and the imidazole ring is 78.72 (7)°. The twist of the allyl group (torsion N3—C17—C18=C19) is 5.1 (5)°. The O—H…Br H-bonds form an infinite chain in the c-direction and the C—H…Br and C—H…O interactions expand this chain into an infinite three-dimensional network (Figure 2). The interaction distances and angles are shown in Table.

Experimental

The synthesis of 3-((2-methyl-1*H*-benzo[*d*]imidazol-1-yl)methyl) benzonitrile has been reported by Aakeröy, *et al.* (2005). 2.48 g of this compound was dissolved in 30 ml THF and 3.7 g of allyl bromide (3-bromopropene) was added. The solution was stirred at 323 K for two days, after which a white solid appeared. This solid was filtered off and washed twice by acetone to get 1.90 g product (yield 64.7%). Colorless crystals of the title compound, suitable for X-ray diffraction, were obtained by evaporation of a solution in methanol and water.

Refinement

H atoms of the crystal water were added at sites suitable for H-bonding. Positional parameters of other H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with $U_{iso}(H) = 1.2$ or $1.5 U_{eq}$. The methyl group was refined as a rigid rotor, allowing the group to rotate along the C—C bond.

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level

Fig. 2. View of the crystal packing of the title compound down the *a* axis.

3-Allyl-1-(3-cyanophenylmethylene)-2-methyl-1H-benzoimidazol-3-ium bromide monohydrate

Crystal data

$C_{19}H_{18}N_3^+ \cdot Br^- \cdot H_2O$	F(000) = 792
$M_r = 386.29$	$D_{\rm x} = 1.393 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4089 reflections
a = 13.4291 (18) Å	$\theta = 3.0 - 28.3^{\circ}$
b = 15.6490 (17) Å	$\mu = 2.24 \text{ mm}^{-1}$
c = 9.0335 (14) Å	<i>T</i> = 293 K
$\beta = 104.048 \ (8)^{\circ}$	Prism, colorless
V = 1841.6 (4) Å ³	$0.22 \times 0.15 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Rigaku Mercury2 diffractometer	4366 independent reflections
Radiation source: fine-focus sealed tube	3365 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.036$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
ω scan	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -20 \rightarrow 20$
$T_{\min} = 0.840, T_{\max} = 1.000$	$l = -8 \rightarrow 11$
14149 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.111$	H-atom parameters constrained
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0552P)^2 + 0.1803P]$ where $P = (F_o^2 + 2F_c^2)/3$
4366 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
218 parameters	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.21740 (14)	0.01484 (13)	0.0889 (2)	0.0399 (4)
N2	0.13955 (16)	0.06050 (14)	-0.1380 (2)	0.0467 (5)
N3	0.4739 (2)	0.12165 (17)	0.8335 (3)	0.0710 (8)
C13	0.5074 (2)	0.1603 (2)	0.4691 (3)	0.0578 (7)
H13A	0.5544	0.1990	0.5246	0.069*
C16	0.4615 (2)	0.11908 (17)	0.7045 (4)	0.0553 (7)
C2	0.08324 (19)	0.09107 (16)	-0.0375 (3)	0.0441 (6)
C11	0.37725 (18)	0.05370 (16)	0.4585 (3)	0.0452 (6)
H11A	0.3372	0.0213	0.5081	0.054*
C7	0.13222 (18)	0.06166 (15)	0.1066 (3)	0.0419 (5)
C9	0.29401 (19)	-0.02289 (16)	0.2168 (3)	0.0441 (6)
H9A	0.3330	-0.0660	0.1779	0.053*
H9B	0.2591	-0.0507	0.2858	0.053*
C10	0.36673 (18)	0.04385 (15)	0.3033 (3)	0.0411 (5)
C6	0.0942 (2)	0.07708 (18)	0.2331 (3)	0.0513 (6)
H6A	0.1267	0.0566	0.3293	0.062*
C1	0.21926 (18)	0.01478 (16)	-0.0588 (3)	0.0432 (6)
C12	0.4477 (2)	0.11203 (16)	0.5407 (3)	0.0478 (6)
C3	-0.0059 (2)	0.13911 (17)	-0.0624 (4)	0.0560 (7)
H3A	-0.0386	0.1593	-0.1588	0.067*
C5	0.0052 (2)	0.12465 (17)	0.2082 (4)	0.0612 (8)
H5A	-0.0233	0.1367	0.2900	0.073*
C15	0.4277 (2)	0.09288 (18)	0.2320 (3)	0.0508 (6)
H15A	0.4216	0.0866	0.1279	0.061*
C8	0.2952 (2)	-0.0302 (2)	-0.1243 (3)	0.0585 (7)
H8A	0.2728	-0.0296	-0.2336	0.088*
H8B	0.3017	-0.0882	-0.0888	0.088*
H8C	0.3604	-0.0020	-0.0931	0.088*
C14	0.4973 (2)	0.1509 (2)	0.3143 (4)	0.0612 (8)
H14A	0.5374	0.1836	0.2652	0.073*
C4	-0.0434 (2)	0.15524 (19)	0.0631 (4)	0.0624 (8)
H4A	-0.1029	0.1875	0.0515	0.075*
C17	0.1160 (2)	0.0806 (2)	-0.3020 (3)	0.0597 (8)
H17A	0.0422	0.0852	-0.3401	0.072*
H17B	0.1394	0.0339	-0.3555	0.072*
C18	0.1641 (3)	0.1606 (3)	-0.3359 (4)	0.0743 (9)
H18A	0.1468	0.1784	-0.4372	0.089*
C19	0.2281 (3)	0.2095 (3)	-0.2405 (5)	0.0915 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H19A	0.2481	0.1949	-().1377	0.110*	
H19B	0.2536	0.2588	—(0.2753	0.110*	
O1W	0.7083 (2)	0.25974 ((19) 0.	2290 (4)	0.1174 (12)	
H1	0.7192	0.2206	0.	2963	0.176*	
H2	0.7528	0.2564	0.	1764	0.176*	
Br1	0.83295 (2)	0.126019	(17) 0.	50549 (3)	0.04996 (12)	
Atomic disp	placement parameters	$(Å^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0344 (10)	0.0447 (11)	0.0394 (12)	-0.0014 (8	0.0065 (8)	-0.0018 (8)
N2	0.0428 (11)	0.0545 (13)	0.0395 (12)	0.0006 (10) 0.0034 (9)	-0.0039 (9)
N3	0.0726 (19)	0.085 (2)	0.0525 (17)	0.0022 (14) 0.0088 (14)	-0.0114 (13)
C13	0.0448 (14)	0.0614 (17)	0.0614 (19)	-0.0065 (1	4) 0.0014 (12)	-0.0066 (14)
C16	0.0478 (15)	0.0593 (17)	0.0553 (19)	0.0010 (13) 0.0058 (13)	-0.0084 (13)
C2	0.0380 (13)	0.0477 (14)	0.0454 (15)	-0.0015 (1	1) 0.0079 (10)	-0.0042 (11)
C11	0.0377 (12)	0.0482 (14)	0.0495 (15)	0.0033 (11) 0.0103 (11)	0.0050 (11)
C7	0.0376 (12)	0.0418 (13)	0.0463 (15)	-0.0028 (1	0) 0.0103 (10)	-0.0024 (10)
C9	0.0400 (12)	0.0416 (13)	0.0485 (15)	0.0012 (10) 0.0067 (11)	0.0047 (10)
C10	0.0365 (12)	0.0416 (13)	0.0434 (14)	0.0025 (10) 0.0062 (10)	0.0033 (10)
C6	0.0524 (15)	0.0555 (16)	0.0497 (16)	0.0002 (13) 0.0194 (12)	0.0003 (12)
C1	0.0359 (12)	0.0470 (14)	0.0446 (15)	-0.0051 (1	1) 0.0055 (10)	-0.0075 (11)
C12	0.0395 (13)	0.0525 (15)	0.0476 (16)	0.0054 (11)) 0.0031 (11)	-0.0011 (11)
C3	0.0459 (15)	0.0548 (17)	0.0629 (19)	0.0037 (12) 0.0045 (13)	0.0010 (13)
C5	0.0600 (18)	0.0604 (18)	0.072 (2)	0.0020 (15) 0.0332 (16)	-0.0074 (14)
C15	0.0515 (15)	0.0549 (15)	0.0460 (16)	-0.0034 (1	3) 0.0116 (12)	0.0048 (12)
C8	0.0503 (15)	0.075 (2)	0.0502 (17)	0.0063 (14) 0.0124 (13)	-0.0138 (14)
C14	0.0550 (17)	0.0614 (17)	0.068 (2)	-0.0157 (1	5) 0.0154 (14)	0.0063 (15)
C4	0.0504 (16)	0.0529 (16)	0.086 (2)	0.0124 (14) 0.0196 (15)	-0.0016 (16)
C17	0.0580 (17)	0.077 (2)	0.0386 (16)	0.0116 (16) 0.0006 (12)	-0.0045 (13)
C18	0.084 (2)	0.080 (2)	0.062 (2)	0.016 (2)	0.0218 (18)	0.0164 (18)
C19	0.094 (3)	0.071 (2)	0.118 (3)	0.006 (2)	0.042 (3)	0.021 (2)
O1W	0.0692 (16)	0.126 (2)	0.153 (3)	0.0065 (16) 0.0181 (17)	0.084 (2)
Br1	0.05534 (19)	0.05266 (18)	0.04170 (18) -0.00159 ((12) 0.01142 (12)	0.00224 (11)

Geometric parameters (Å, °)

N1—C1	1.340 (3)	С6—Н6А	0.9300
N1—C7	1.400 (3)	C1—C8	1.476 (4)
N1—C9	1.472 (3)	C3—C4	1.371 (4)
N2—C1	1.341 (3)	С3—НЗА	0.9300
N2—C2	1.400 (3)	C5—C4	1.399 (5)
N2—C17	1.471 (3)	С5—Н5А	0.9300
N3—C16	1.137 (4)	C15—C14	1.383 (4)
C13—C12	1.372 (4)	C15—H15A	0.9300
C13—C14	1.379 (4)	C8—H8A	0.9600
C13—H13A	0.9300	C8—H8B	0.9600
C16—C12	1.450 (4)	C8—H8C	0.9600
C2—C7	1.387 (4)	C14—H14A	0.9300

C2—C3	1.385 (4)	C4—H4A	0.9300
C11—C10	1.383 (3)	C17—C18	1.475 (5)
C11—C12	1.392 (4)	С17—Н17А	0.9700
C11—H11A	0.9300	С17—Н17В	0.9700
С7—С6	1.381 (3)	C18—C19	1.306 (5)
C9—C10	1.512 (3)	C18—H18A	0.9300
С9—Н9А	0.9700	C19—H19A	0.9300
С9—Н9В	0.9700	C19—H19B	0.9300
C10—C15	1.389 (4)	O1W—H1	0.8499
C6—C5	1.380 (4)	O1W—H2	0.8502
C1—N1—C7	109.1 (2)	C11—C12—C16	119.8 (3)
C1—N1—C9	127.1 (2)	C4—C3—C2	116.2 (3)
C7—N1—C9	123.7 (2)	С4—С3—Н3А	121.9
C1—N2—C2	108.8 (2)	С2—С3—Н3А	121.9
C1—N2—C17	126.9 (2)	C6—C5—C4	121.7 (3)
C2—N2—C17	124.2 (2)	С6—С5—Н5А	119.1
C12—C13—C14	119.6 (3)	С4—С5—Н5А	119.1
C12—C13—H13A	120.2	C14-C15-C10	120 7 (3)
C14—C13—H13A	120.2	C14—C15—H15A	119.6
N_{3} C16 C12	177 5 (3)	C10-C15-H15A	119.6
$C7 - C^2 - C^3$	121.8 (2)	C1 - C8 - H8A	109.5
C7 - C2 - N2	1067(2)	C1 - C8 - H8B	109.5
$C_{3}^{2} = C_{2}^{2} = N_{2}^{2}$	131.5(2)	H8A = C8 = H8B	109.5
C_{10} C_{11} C_{12}	131.3(2) 120.2(2)	C1 - C8 - H8C	109.5
C10-C11-H11A	110.0		109.5
C12_C11_H11A	119.9		109.5
$C_2 = C_7 = C_6$	122.2 (2)	$C_{15} - C_{14} - C_{13}$	109.5 120.1(3)
$C_2 = C_7 = C_0$	122.2(2) 106.3(2)	C15 - C14 - H14A	110.0
$C_2 = C_7 = N_1$	100.5(2)	C13 - C14 - H14A	110.0
$N_1 = C_1 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	131.3(2) 111.70(10)	$C_{13} = C_{14} = M_{4} + K_{5}$	119.9
N1 = C9 = C10	100.3	$C_3 = C_4 = C_3$	122.1 (5)
$\Gamma_{10} = 0$	109.5	$C_{5} = C_{4} = H_{4}$	119.0
N1 C0 H0B	109.5	$N_{2} = C_{4} = H_{4} + A$	119.0
11 - 0 - 119B	109.5	$N_2 = C_17 = C_{18}$	100.0
	109.5	$N_2 = C_1 / = M_1 / A$	109.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9	N2 C17 H17P	109.0
$C_{11} = C_{10} = C_{13}$	110.0(2) 110.7(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.0
$C_{11} = C_{10} = C_{9}$	119.7(2) 121.4(2)	L174 C17 L17D	109.0
C_{13}	121.4(2)	$H_{A} - C_{A} - H_{A} - H_{A} - C_{A} - H_{A} - H_{A$	107.0
$C_{1} = C_{0} = C_{3}$	110.0 (3)	C19 - C18 - C17	127.0 (3)
C = C = H G A	122.0	C19-C18-H18A	116.2
	122.0	C1/C18H18A	110.2
N2 - C1 - N1	109.0 (2)	C18—C19—H19A	120.0
$N_{1} = C_{1} = C_{2}$	125.4 (2)		120.0
	125.5 (2)	нтуа—Ст9—Н19В	120.0
C13—C12—C11	120.5 (3)	HI—UIW—HZ	109.5
U13—U12—U16	119.6 (3)		
C1—N2—C2—C7	-0.1 (3)	C2—N2—C1—C8	178.2 (3)
C17—N2—C2—C7	-177.1 (2)	C17—N2—C1—C8	-5.0 (4)

supplementary materials

C1—N2—C2—C3	-178.3 (3)		C7—N1—C1—N2		0.8 (3)
C17—N2—C2—C3	4.8 (4)		C9—N1—C1—N2		-175.9 (2)
C3—C2—C7—C6	1.2 (4)		C7—N1—C1—C8		-177.8 (2)
N2—C2—C7—C6	-177.2 (2)		C9—N1—C1—C8		5.6 (4)
C3—C2—C7—N1	178.9 (2)		C14—C13—C12—	C11	0.1 (4)
N2—C2—C7—N1	0.6 (3)		C14—C13—C12—	C16	177.2 (3)
C1—N1—C7—C2	-0.8 (3)		C10-C11-C12-	C13	0.0 (4)
C9—N1—C7—C2	175.9 (2)		C10-C11-C12-	C16	-177.2 (2)
C1—N1—C7—C6	176.6 (3)		C7—C2—C3—C4		-0.5 (4)
C9—N1—C7—C6	-6.6 (4)		N2—C2—C3—C4		177.4 (3)
C1—N1—C9—C10	99.8 (3)		C7—C6—C5—C4		0.0 (4)
C7—N1—C9—C10	-76.3 (3)		C11—C10—C15—	C14	-0.3 (4)
C12-C11-C10-C15	0.2 (4)		C9—C10—C15—C	214	-177.0 (3)
C12—C11—C10—C9	176.8 (2)		C10-C15-C14-	C13	0.4 (5)
N1-C9-C10-C11	123.7 (2)		C12—C13—C14—	C15	-0.3 (5)
N1-C9-C10-C15	-59.7 (3)		C2—C3—C4—C5		-0.4 (4)
C2—C7—C6—C5	-0.9 (4)		C6—C5—C4—C3		0.6 (5)
N1—C7—C6—C5	-178.0 (3)		C1—N2—C17—C1	8	-89.6 (3)
C2—N2—C1—N1	-0.4 (3)		C2—N2—C17—C1	8	86.7 (3)
C17—N2—C1—N1	176.5 (2)		N2—C17—C18—C	219	5.1 (5)
Hydrogen-bond geometry (Å, °)					
D—H····A		D—H	H···A	$D \cdots A$	D—H··· A
O1W—H1···Br1		0.85	2.59	3.375 (2)	155
O1W—H2···Br1 ⁱ		0.85	2.78	3.422 (3)	134

O1W—H2···Br1 ¹	0.85	2.78	3.422 (3)	134
C6—H6A…Br1 ⁱⁱ	0.93	3.21	3.939 (3)	137
C8—H8A…Br1 ⁱⁱⁱ	0.96	2.94	3.767 (3)	145
C8—H8C···N3 ^{iv}	0.96	2.64	3.463 (4)	143
C13—H13A···O1W ^v	0.93	2.50	3.359 (4)	154
C17—H17A…Br1 ^{vi}	0.97	2.89	3.843 (3)	168
C17—H17B···Br1 ⁱⁱⁱ	0.97	2.91	3.862 (3)	167

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*, -*z*; (iv) *x*, *y*, *z*-1; (v) *x*, -*y*+1/2, *z*+1/2; (vi) *x*-1, *y*, *z*-1.

Fig. 1

Fig. 2

